Microbial dynamics associated with leaves decomposing in the mainstem and floodplain pond of a large river
نویسندگان
چکیده
Aquatic habitats of forested floodplain systems receive large inputs of allochthonous plant litter. We examined the decomposition of, and microbial productivity associated with, leaves of a common floodplain tree, Populus gr. nigra, in the mainstem and floodplain pond of a seventh order river in 2 consecutive years. Litter bags were submerged at both sites, retrieved periodically, and analyzed for litter mass loss, bacterial and fungal biomass, growth rate and production, and sporulation rates of aquatic hyphomycetes. Litter decomposition rates were similar in both sites and years (leaf breakdown coefficients k of 0.0070 to 0.0085 d), although microbial dynamics partly differed between sites. Species diversity of aquatic hyphomycetes was lower on leaves submerged in the pond (16 species) than in the river (21 species). Mycelial biomass was also significantly lower in the pond, with values <20 mgC g of detrital C, whereas peaks of 50 and 80 mgC g were reached in leaves in the mainstem. These differences contrast with the comparable fungal productivity at both sites (peak rates of 1.4 mg of mycelial C per g of detrital C per day in both years). This suggests that fungi were equally productive in both habitats but experienced greater losses in the pond. Bacterial numbers and biomass also showed the same basic pattern at both sites, although somewhat higher levels were reached in the pond (maximum of about 10 cells and 0.5 mg g of detrital C). Bacterialspecific production rates fluctuated between 0.06 and 1.5 d with lower values occurring in the floodplain pond. Although bacteria on leaves were clearly outweighed by fungi in terms of biomass, they accounted for a sizeable fraction of the total biomass (up to 11%), and up to 32% of the total microbial production. Our comparison of bacterial and fungal productivity thus points to a critical role of fungi in litter decomposition in aquatic habitats of river floodplain systems, while suggesting that bacteria must not be overlooked as important agents of litter decompositon in riverine environments.
منابع مشابه
Simulation of floodplain zones in Tehran's metropolitan watershed (case study: Kaan basin)
Simulation of floodplain zones in Tehran's metropolitan watershed (case study: Kaan basin) Ezaatollah Ghanavati, Associate prof. Geographical science faculty, Kharzmi University Ali Ahmmadabadi. Assistance prof. Geographical science faculty, Kharzmi University Negar Gholami, MA in Geomorphology, Geographical science faculty, Kharzmi University Extended abstract Floodplains and adjacent riv...
متن کاملInvestigating the Banks Sensitive to Erosion with an Emphasis on Geological, Geometric, and Hydraulic Characteristics: A Case Study of Bashar River
Extended abstract Introduction The vital need for river management is understood and predicts bank erosion processes. River bank erosion is one of the sediment major sources for many rivers across the world. Bank erosion is a key process in fluvial dynamics, affecting a wide range of physical, ecological and socio-economic issues in the fluvial environment. These include the establishm...
متن کاملSimulation of floodplain zones in Tehran's metropolitan watershed (case study: Kaan basin)
Simulation of floodplain zones in Tehran's metropolitan watershed (case study: Kaan basin) Ezaatollah Ghanavati, Associate prof. Geographical science faculty, Kharzmi University Ali Ahmmadabadi. Assistance prof. Geographical science faculty, Kharzmi University Negar Gholami, MA in Geomorphology, Geographical science faculty, Kharzmi University Extended abstract Floodplains and adjacent riv...
متن کاملSpatial Patterns in Biofilm Diversity across Hierarchical Levels of River-Floodplain Landscapes.
River-floodplain systems are among the most diverse and productive ecosystems, but the effects of biophysical complexity at multiple scales on microbial biodiversity have not been studied. Here, we investigated how the hierarchical organization of river systems (i.e., region, floodplain, zone, habitats, and microhabitats) influences epilithic biofilm community assemblage patterns by characteriz...
متن کاملApplication of Geomorphic River Recovery in river management, case study, Northen Alborz, Lavij Rud catchment
Rivers have a complicated and various condition in the diverse environment, and various science such as Hydrology, geomorphology, hydraulic, ecology and engineering have it been discussed. River geomorphology with studying of river process and landforms, examination of river landscape evolution, can be playing an important role in identifying of river channel character and behavior. To order th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017